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The results of calculations that allow one to obtain the characteristics of a closed-loop geothermal heat ex-
changer (C-LGHE) on the basis of our own approximate mathematical model are presented. These results are
given in the form of appropriate tables containing the reduced quantities characterizing operation of such a
geothermal heat exchanger. On this basis, C-LGHE operation is analyzed and conclusions on the possibilities
of utilization of geothermal energy in binary power stations are drawn.

The results of analysis of the technical and economic possibilities of construction of a closed-loop geothermal
heat exchanger (C-LGHE) are presented. Exchangers of this type can form one of the elements of geothermal binary
power stations utilizing high-temperature energy accumulated in rocks at large depths. In the context of a lack of data
on thermal calculations of C-LGHEs, we performed calculations that allowed us to obtain the characteristics of these
heat exchangers by our own approximate mathematical model [7].

Introduction. Two fundamental designs of extracting installations can be used in acquisition of geothermal
energy, namely, so-called open or closed systems. A research program related to this topic is underway at Berlin Tech-
nical University [11, 12], dealing with the possibilities and cost effectiveness of the construction of an underground
closed-loop geothermal heat exchanger (C-LGHE). This C-LGHE consists of a set of underground pipelines, where a
liquid heat carrier is pumped for acquisition of geothermal energy from the rock mass and transfer of it to the binary
power station (Fig. 1).

The amount of acquired geothermal energy depends on the area of the heat-transfer surface of the heat ex-
changer, the rate of liquid flow, and the depth of the heat-exchanger location, which is greatly related to the tempera-
ture of the surrounding rocks.

In order to determine temperature in the case of transient heat conduction in the surrounding rock bed, we can
use the solutions of heat-conduction equations, which are widely provided in the literature for various boundary condi-
tions. Some of the solutions for averaged thermal and physical properties of the rock bed enable one to determine time-
dependent reduced linear thermal resistance in the bed. For example, in [3, 4] a procedure is presented for calculation
of linear thermal resistance of the rock bed through the introduction of a time-dependent radius of interaction of the sur-
rounding medium rs = f(t) under thermal conditions in the rock bed. 

According to [1, 2], if rs >> rw, the radius rs increasing with time t can be determined from the relation

rs = 2 √ast  , (1)

where rw is the radius of the borehole in the rock and as is the thermal diffusivity of the rock bed. The overall heat-
transfer coefficient km which corresponds to t = tm can be determined from the equations given by Charnyi [1, 2]:
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where relation (2a) corresponds to the case of deep wells, when the piping thermal resistance can be neglected.
Another way of calculating the overall heat-transfer coefficient is provided by Dyad’kin and Gendler [5], who

derived the following formulas from the analytical solutions presented in [6, 10]:

km = 
kz

1 + Bi ln (1 + √γ
_
 Fom )

 , (3)

where Bi = αl ⁄ λs and Fo = ast ⁄ l
2,
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The parameter γ
_
 in Eq. (3) depends on the value of the Biot number. If Bi → ∞, which corresponds practically to

Bi > 30, γ
_
 = π; in the remaining cases γ

_
 = 2. Then, for Bi > 30 Eq. (3) can be written as follows:

km = 
kz

1 + Bi ln (1 + √ π Fom )
 . (3a)

For Bi → ∞ relation (3a) takes the form

km F 
λs

r1 ln (1 + √ π Fom )
 .

The C-LGHE is independent of its localization and is characterized by long-term operation at a relatively
small power of the circulation pumps pumping liquid through a tight system of underground heat exchangers. An im-

Fig. 1. Schematic of an underground closed-loop geothermal heat exchanger
co-operating with the binary power station.
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portant feature of the C-LGHE is its ability for flexible operation. Such heat exchangers enable one to get geothermal
energy in all locations where open systems cannot be applied for geological reasons. 

However, a disadvantage of the C-LGHE is its significant investment cost as well as the necessity of master-
ing technological processes related to drilling and installation of tight pipeline systems at large depths. Drilling tech-
niques allowing extraction of hydrocarbon resources at large distances from the platform can be used in drilling of the
holes. This is related to the utilization of drilling robots with application of adequate control for temperatures not ex-
ceeding 175oC. The existing practical possibilities regard utilization of boreholes of large depths (up to 5000 m) and
a horizontal length up to 15,000 m, which was discussed in [12].

This paper presents some results of the numerical calculations of the C-LGHE and the results of calculations
obtained using the analytical calculation model of [7], where the above-reported relations were applied to calculation
of the time-dependent overall heat-transfer resistance or the overall coefficient of heat transfer from the rock bed to the
heat carrier.

Temperature Field in an Underground Closed-Loop Geothermal Heat Exchanger. Using the above-pre-
sented relations for the overall coefficient of heat transfer between the bed and the heat carrier, we developed a rela-
tively simple calculation model of a C-LGHE [7]. In so doing we applied the following simplification assumptions:

• The heat exchanger is divided into three constituent elements connected in series and includes a vertical
pumping pipe, a horizontal pipe located at some depth and forming a principal part of the heat exchanger, and a ver-
tical extracting pipe. For each of the above-mentioned elements, a somewhat different calculation model is used, due
to different heat-transfer conditions. In all cases, the energy-balance equation for an elementary heat-transfer surface is
used. A common feature is the assumption that the overall coefficient of heat transfer from the bed to the heat carrier
is known and the same for all three elements of the heat exchanger, which is time-dependent and can be determined
from (2) or (3).

• In the case of extracting and pumping pipes, the bed temperature at a significant distance from these ele-
ments of the heat exchanger varies linearly with depth according to the relation [9]

Ts (h) = a + bh . (5)

The temperature of the rock bed surrounding a horizontal part of the heat exchanger depends on the depth H and can
be determined from (5):

TsH = Ts h=H = a + bH . (5a)

Due to the constant temperature of the surrounding bed, the horizontal element of the heat exchanger can be consid-
ered as a heat exchanger of the "condenser" type.

• Elementary heat power transferred from the bed to the heat carrier in the heat exchanger can be determined
through the overall heat-transfer coefficient km:

dQ
.
 = km [Ts (h) − Tp (h)] dA . (6)

• Elementary heat power taken up by the heat carrier is described as

dQ
.
 = liW

.
idTpi , (7)

where li for the subsequent elements of the heat exchanger (i = 1, 2, 3) assumes the following values: l1 = +1 for the
pumping pipe, l2 = +1 for the horizontal pipes, and l3 = –1 for the vertical extracting pipe.

Applying the relations describing the overall coefficient of heat transfer between the bed and the fluid and
taking into account the above-listed simplifications, in what follows we will use a theory of an underground closed-
loop geothermal heat exchanger that will enable us to determine analytically an approximate temperature field of the
component removing heat from the surrounding bed [7].

For each of the heat-exchanger elements, the conditions of heat exchange between the bed and the heat carrier
can be described by an ordinary differential equation of the first order
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dϑ i

dhi
 + αiϑi + βi = 0   at   i = 1, 2, 3, (8)

with a general solution in the form

ϑi = Ci exp (− αihi) − 
βi

αi
 . (9)

The integration constant Ci can be determined from the following boundary condition at the inlet to each element of
the heat exchanger: at hi = 0, ϑi(0) = ϑ i0. The coefficients αi and βi in Eq. (8) for a particular heat-exchanger element
(i = 1, 2, 3) have different values and are presented in [7]. Without going into details of the derivations and transfor-
mations, which are also given in [7], the relations describing the temperature field Tp, the temperature difference ϑ i,
and the reduced temperature difference Θi can be derived for each subsequent element of the heat exchanger.  

For example, the temperature differences ϑ i for specific elements of the heat exchanger are as follows:
• for element 1
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• for element 2
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Here k = km
 ⁄ k1 and Ni = kAi

 ⁄ W
.

 is the number of transfer units.
The reduced temperature differences at the outlet from the particular element of the heat exchanger can be de-

termined from (10)–(12) as
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 = exp (− kN2) , (14)

Θ3H = 
TsH − Tp3H

TsH − Tp2L
 = 

φ
ψ

 + exp (− kN3) − 
φ

ψkN3
 [1 − exp (− kN3)] , (15)

where Ψ = Θ1HΘ2L, Φ = 
TsH − Ts0

TsH − Tp10
.

In order to analyze the influence of all quantities characterizing subsequent heat-exchanger elements on the re-
duced temperature difference at the outlet from the third element, we introduce the following relation:

Θ1H,2L,3H = Θ1HΘ2LΘ3H = Θ1H,2LΘ3H , (16)

where 
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Θ1H,2L = Θ1HΘ2L = ψ = 
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Then the relation describing the adequately defined temperature difference at the outlet from the third heat-exchanger
element with consideration of the fluid temperature effect at the inlet to the first element assumes the form

Θ1H,2L,3H = 
TsH − Tp3H

TsH − Tp10
 = φ + Θ1H,2L exp (− kN3) − 

φ
N3

 [1 − exp (− kN3)] . (18)

A general view of the curves illustrating the temperature fields for subsequent elements of the heat exchanger with dif-
ferent numbers of heat-transfer units is presented in Fig. 2.

Calculation Results. With the above-presented relations, we carry out simple calculations of the reduced tem-
perature differences. Figure 3 shows the reduced temperature fields Θ1, Θ2, and Θ3 for three elements of the C-LGHE
as functions of the reduced length for different numbers of heat-transfer units N and the given values of k and Φ with
Θi

∗  = 1−Θi. Figure 4 presents the reduced temperature fields of the first and second elements of the C-LGHE for dif-
ferent values of the reduced heat-transfer coefficient with given N and Φ.

The remaining results of calculations for the entire C-LGHE, which are the reduced temperature differences at
the outlet, are presented in Tables 1 and 2. These tables show the influence of important characteristics of the C-
LGHE on the temperature of the heat carrier flowing out from the heat exchanger (this temperature is equal to the

Fig. 2. Fluid temperature fields in C-LGHE for different numbers of transfer
units (N4 < N3 < N2 < N1 and Ni corresponds to the ith curve).

Fig. 3. Reduced temperature fields for three C-LGHE elements with different
numbers of transfer units: a) k = 1, Φ = 1, N = 0.2 (1), 0.4 (2), 0.6 (3), 0.8
(4), 1 (5); b) k = 0.5, Φ = 1.1, N = 0.4 (1), 0.8 (2), 1.2 (3), 1.6 (4), 2 (5).
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temperature at the inlet to the power-station system). Of significance in the influence on temperature Tpd are the con-
ditions of heat transfer in the third heat-exchanger element. In the case of its insulation, the efficiency of the C-LGHE
increases, which is seen from Table 2. On the other hand, the temperature at the outlet from the system Tpw is closely
related to the way of its utilization in the power station.

The amount of geothermal energy acquired by the thermal power station is affected by the heat-carrier tem-
perature at the inlet to (Tpd) and the outlet from the system (Tpw) and the heat-carrier flow rate in accordance with
the expression

Q
.
 = m

.
cp (Tpd − Tpw) = W

.
 (Tpd − Tpw) . (19)

The heat-carrier temperature at the inlet to the system Tpd depends on the operational efficiency of the C-LGHE. If
the overall efficiency of the power station is known, its power can be determined from the relation

Fig. 4. Reduced temperature fields for two C-LGHE elements with different
values of the reduced heat-transfer coefficient: a) Φ = 1.1, N = 1, k = 1 (1),
2 (2), 3 (3), 4 (4), 5 (5); b) Φ = 1.2, N = 2, k = 0.5 (1), 1 (2), 1.5 (3), 2 (4),
2.5 (5).

TABLE 1. Reduced Temperature Θ1H,2L,3H of the Heat Carrier at the Outlet from the C-LGHE

Φ
N1

0.2 0.4 0.6 0.8 1.0

0.9 0.577 0.402 0.344 0.341 0.361

1.0 0.591 0.424 0.372 0.374 0.399

1.1 0.605 0.446 0.401 0.407 0.438

1.2 0.619 0.469 0.429 0.441 0.476

1.3 0.634 0.491 0.457 0.525 0.514

TABLE 2. Reduced Temperature Θ1H,2L,3H of the Heat Carrier at the Outlet from the C-LGHE with Insulation of the Outlet
Socket

Φ
N1

0.2 0.4 0.6 0.8 1.0

0.9 0.602 0.364 0.220 0.134 0.082

1.0 0.608 0.370 0.227 0.139 0.086

1.1 0.613 0.377 0.233 0.144 0.089

1.2 0.619 0.384 0.239 0.149 0.093

1.3 0.625 0.391 0.245 0.154 0.096
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Ne = Q
.
ηe . (20)

The overall efficiency of the power station is related to the efficiency of the comparative Clausius–Rankine
cycle ηCR, which depends on the temperature attained in the heat exchanger and on the ambient temperature.

Taking into account the fact that the drilling technique now in application, which utilizes robots with adequate
control, cannot be realized under temperatures exceeding 175oC [11], this temperature must be assumed as the upper
limit of the heat-carrier temperature. In this connection, water can be used as a working medium in the Clausius–
Rankine cycle within the temperature range 120–170oC. For temperatures lower than 120oC, fluid with a low boiling
point should be used as a heat carrier.

CONCLUSIONS

On the basis of the above-presented considerations and the conducted analysis, which is largely omitted due
to space restrictions, we can make the following concluding remarks:

• The temperature field of the heat carrier in C-LGHE depends on the heat-carrier flow rate and reduced over-
all heat-transfer coefficient.

• In order to attain an adequate heat-carrier temperature at the outlet from the vertical hole, the heat-transfer
surface area of a horizontal part with respect to the surface area of vertical holes must be such that the heat carrier at
the outlet from the horizontal part could reach the rock-bed temperature and the decrease in the temperature in the ex-
tracting well must be as low as possible. The best design would be with insulation of the extraction well.

• In order to account for the decreasing effect of the overall heat-transfer coefficient, C-LGHE must be de-
signed such that the heat carrier could attain the maximum rock-bed temperature for a longer period of operation.

• Because the temperature of hot water at the surface of the extracting well (at the inlet to the heat ex-
changer) usually does not exceed 160oC, two-component systems can be used. Water or ecological low-boiling point
refrigerants [8] can be used as working media in the secondary loop.

• In order to improve the efficiency of binary power stations, designs incorporating additional superheating or
combination with a gas turbine would be advised.

NOTATION

A, area, m2; a, thermal diffusivity, m2/sec; Bi, Biot number; cp, specific heat at constant pressure, J/(kg⋅K); D,
diameter, m; Fo, Fourier number; H, depth of heat-exchanger location, m; h, depth, m; k, reduced heat-transfer coeffi-
cient; km, overall heat-transfer coefficient, W/(m2⋅K); L, length of the heat exchanger, m; l, length, m; l

_
, reduced

length; m
.
, mass flow rate, kg/sec; N, number of transfer units; Q

.
, heat power, W; r, radius, m; T, temperature, oC; t,

time, sec; W, heat capacity, J/K; α, heat-transfer coefficient, W/(m2⋅K); η, efficiency; λ, thermal conductivity,
W/(m⋅K); Θ, reduced temperature difference; ϑ , temperature difference, oC. Subscripts: d, inlet; p, fluid; s, rock; 1, 2,
and 3, subsequent elements of the heat exchanger.
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